

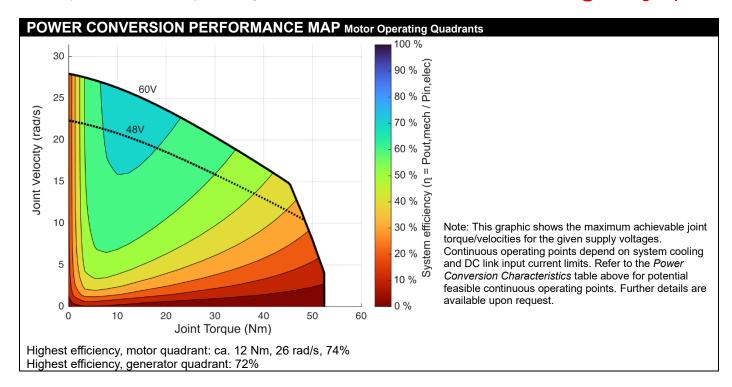
High Efficiency Joint

HEJ 70-48-50

30 V - 60 V | 50 Nm | 28 rad/s

This is a highly compact, integrated and efficient robotic drive system that contains all subsystems to provide a full motion solution, such as electronics, motor, gearing and sensing. This drive is fully enclosed, ingress- and impact-rated, and designed for continuous operation and active thermal cooling if necessary. It offers high robustness and a long operating lifetime. Controlled via *EtherCAT*, it can implement various internal control and gain topologies, rendering it suitable for all robotics applications. Simulation models enable dependable robotic system designs.

All data are provided for U_{DC} = 48 V and T_{amb} = 25°C, unless otherwise specified. Specifications for different voltage levels or other operating limits, and corresponding simulation models, are available upon request.


OUTPUT CHARACTERISTICS		
Max. Joint velocity	$U_{DC} = 48V$	+/- 22 rad/s
	$U_{DC} = 60 \text{V}$	+/- 28 rad/s
Max. Joint torque, actively controlled & repetitive		+/- 50 Nm
·	Note: Subsequent design versions will achieve >60 Nm. Contact us for details.	
Nominal joint torque		+/- 19 Nm
This torque can be maintained indefinitely without external forced air cooling. Conditions: Actuator mounted in free space (to allow convective cooling), and with a joint velocity of 2 rad/s.	Note: Subsequent design versions will achieve >25 Nm. Contact us for details.	

				POWER CONVERSION CHARACTERISTICS Motor Operating Quadrants				
V _{joint} (rad/s) Joint Velocity	<i>M_{joint}</i> (Nm) Joint Torque	I _{in}	(A)	P _{loss} (W) Total System Loss	Efficiency (%) Pout,mech / Pin,elec			
0	0		0.04	2	0	•		
0	50		21.7	1040	0			
0	40		10.6	509	0			
0	30		5.2	248	0			
0	20		2.2	52	0	•		
0	10		Improve	d values will be	published 0	•		
10	0		0.4	soon. ₁₇	0	•		
10	45		25.8	Posch offto	36			
10	25		9.5	205		lack		
15	0				0.com for 0	•		
15	30		15.9	details ₁₄	59			
15	15		6.9	103	68			
20	0		0.7	34	0	•		
20	10		5.8	79	72	•		
25	0		0.7	10	0	_		
					7/	_		
<u></u>	0 0 0 0 0 0 0 10 10 15 15 15 20	0 0 0 50 0 40 0 30 0 20 0 10 10 45 10 25 15 30 15 30 15 15 20 0 20 10	0 0 0 50 0 40 0 30 0 20 0 10 10 45 10 25 15 0 15 30 15 15 20 0 20 10	0 0 0.04 0 50 21.7 0 40 10.6 0 30 5.2 0 20 2.2 0 10 Improve 10 0 0.4 10 45 25.8 10 25 robotic 15 30 15.9 15 15 6.9 20 0 0.7 20 10 5.8	0 0 0.04 2 0 50 21.7 1040 0 40 10.6 509 0 30 5.2 248 0 20 2.2 52 0 10 Improved values will be 10 0 0.4 soon. 17 10 45 25.8 Reach out to 10 25 9.5 Reach out to 15 0 0.5 details 14 15 30 15.9 details 14 15 15 6.9 103 20 0 0.7 34 20 10 5.8 79	0 0 0.04 2 0 0 50 21.7 1040 0 0 40 10.6 509 0 0 30 5.2 248 0 0 20 2.2 52 0 0 10 Improved values will be published 0 10 45 25.8 Reach out to 36 10 25 robotics@maxongroup.com for 55 15 0 0.5 details 14 59 15 15 6.9 103 68 20 0 0.7 34 0 20 10 5.8 79 72		

Operating points with a triangle (\blacktriangle) can only be maintained for short times (some seconds, due to thermal limitations (mainly: continuous input current limited to 6 A_{RMS})).

Operating points marked with a circle (•) can be maintained continuously, but potentially require adequate external forced air cooling. Simulation models are available upon request.

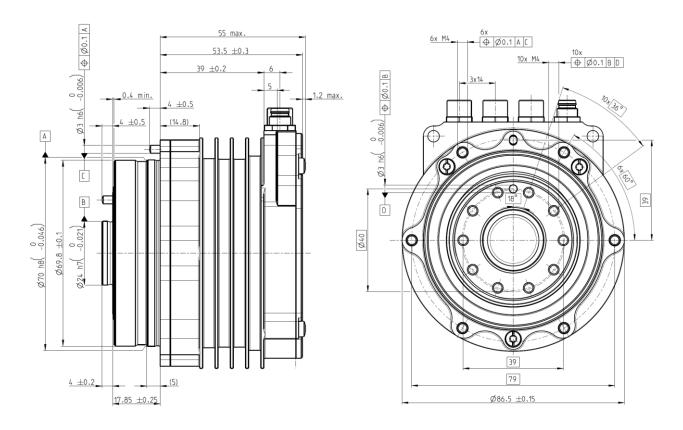
ELECTRICAL CHARACTERISTICS	
Operating input voltage range (voltages as low as 20V are possible but might have implications – contact us.)	30 V – 60 V
Max. allowable transient input voltage (e.g., due to inductive spikes or noise on the supply bus)	67.0 V
DC link input capacitance	240 µF
Max. power supply input current During transients or accelerations, the system can create high current peaks. Capacitive inrush current not considered. Unloaded joint.	< 40 A
Max. continuous power supply current	8.0 A _{RMS}
(This is a conservative limit – please approach us if you plan on exceeding this limit)	

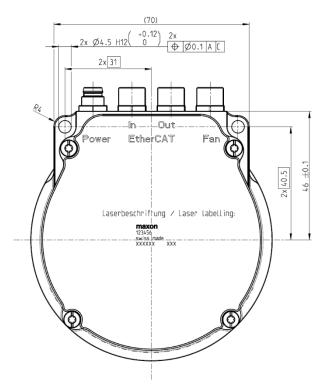
CONTROL CHARACTERISTICS	
Control modes	Joint position, velocity, torque, motor current (FOC)
	Joint impedance controller (simultaneous control of position, velocity, torque)
	PDO-mappable control gains
Joint position sensor	Resolution: 14 bit. Absolute angular error: < 0.01 rad (0.6°)
	Note that the firmware applies sensor fusion techniques to reduce noise and INL error on
	this encoder signal. This sensor measures the absolute output position (after the gear).
Joint torque measurement	Absolute error, steady-state: < 0.8 Nm
Via electric motor current, compensated	
Joint velocity filtering	Configurable lowpass
Controller execution rate	Current controller (FOC): 25 kHz
	All others: 2.5 kHz
	PWM frequency: 50 kHz
Max. EtherCAT communication rate	1 kHz
Internal temperature sensors	Motor winding and power electronics, PDO-mappable
Also used for internal protection like i2t	
Motor temperature i2t protection	Configurable
Mechanical backlash	Avg: 0.49°. Min – Max: 0.37° – 0.60°
Fixed motor position, movement of the joint	Depending on the selected control topology, operating regime and gains, the inherent internal mechanical backlash can potentially affect the controller performance
Tot. mech. moment of inertia, at joint	55 kgcm ²
Backdriving torque	ca. 0.5 Nm
(system disabled, including joint seal friction)	
Acceleration time	<> ms
	Time it takes to accelerate the joint from standstill to its maximum velocity.

ENVIRONMENTAL CHARACTERIST	ics
Ingress protection	IP67, also with rotating joint and applied bending moments
Ambient operating temperature	-20°C to +60°C
	(might require adequate cooling if the system exhibits losses)
Thermal interface	Integrated heat sinks for forced air cooling.
Note: The thermal dissipation capability serves only as an indication. Actual performance depends on external heat transfer system and environment. Details are available upon request.	Continuous thermal dissipation (active cooling) up to ca. 140 W. Integrated and user-controllable fan power supply.

LIFETIME CHARACTERISTICS			
Note: A high emphasis was put on creating a highly reliable and robust product. Nonetheless, the operating lifetime of this drive strongly depends on its load cases and environmental aspects. The indicated values are only a (simplified) guideline. Further details are available upon request.			
High-cycle fatigue: Joint impact/collision events 12e6 impact			
	100e3 impacts at 50 Nm		
	1e3 impacts at 67 Nm		
Lifetime at constant operation	10 Nm, 22 rad/s: >56'000 h		
Note 1: Depending on environmental factors (e.g., temperature, dust or chemicals exposure), the joint output seal may potentially degrade earlier.	30 Nm, 5 rad/s: >56'000 h		
Note 2: These operating points are naturally dependent on temperature and specific aspects of the load cycle and gear lubrication life. Details can be provided upon request.			

MECHANICAL CHARACTERISTICS	
Axial length, overall	ca. 73 mm
Diameter, excluding connectors	86.5 mm
Mass	1.05 kg
Max. joint axial, radial and bending loads, dynamic	900 N
Note 1: The system provides an integrated cross-roller bearing.	90 Nm
Note 2: Higher loads are possible, but might reduce structural lifetime (high-cycle fatigue).	
Details are available upon request.	


ELECTRICAL INTERFACES	
Connectors: 4x M8	1x Power supply,
	2x EtherCAT (allows daisy-chaining of several systems),
	1x fan power and control
EtherCAT	Full Duplex, 100 Mbit/s
Grounding concept	All housing parts connected to DC link GND.
	EtherCAT shield connected to housing/GND.
Fan power and control	Power: 12 V, max. 700 mA.
	Control: PWM (Open Drain, 25 kHz).
	Tacho input: Pull-up, 10 kΩ.

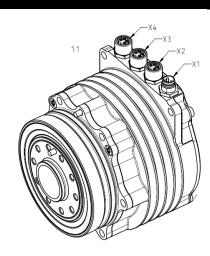

Sold & Serviced By:

Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

MECHANICAL DRAWINGS

Please note: maxon can offer customized housing geometries, e.g., different thread sizes, hole patterns, attachment points, or heat sinking geometries. Please contact robotics@maxongroup.com

Sold & Serviced By:


Toll Free Phone (877) SERV098
Toll Free Fax (877) SERV099
www.electromate.com
sales@electromate.com

ELECTRICAL PINOUTS

Steckerbelegung / PIN allocation			
Stecker/connector	PIN	Signal	
X1 Power M8 male, 4poles, A-coded	1	VBUS	
PIN 2-PIN 4	2	VBUS	
	3	GND	
	4	GND	
X2 EtherCAT In M8 female, 4poles, A-coded	1	TX+	
PIN 4 PIN 2	2	RX+	
	3	RX-	
	4	TX-	

Steckerbelegung / PIN allocation			
Stecker/connector	PIN	Signal	
X3 EtherCAT Out M8 female, 4poles, A-coded	1	TX+	
PIN 4———PIN 2	2	RX+	
PIN 3—PIN 1	3	RX-	
	4	TX-	
X4 Fan M8 female, 4poles, A-coded	1	Vcc 12V	
PIN 4—PIN 2 PIN 3—PIN 1	2	GND	
	3	PW M-Fan	
	4	Tacho-Fan	

Please note:

- 1) Due to technical limitations and design decisions, the mounting orientation (rotation) of the 4x connectors X1-X4 is arbitrary and cannot be changed (rotated). This means that the keys of these connectors can point in any direction.
- 2) maxon can offer customized connectors or cabling solutions. Please contact robotics@maxongroup.com

Sold & Serviced By:

Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com