# Space-Saving Solid-State Relay













# **Description**

The SRP1-KC Relays series offers a slim, low-profile solution for tight-space installations. Designed with convenience and reliability in mind, these compact solid-state relays (SSRs) are ideal for OEM applications in foodservice equipment and other space-constrained control panels.

- Low-Profile Housing: Optimized for compact enclosures and flat mounting surfaces where space is at a premium.
- Quick Installation: Equipped with ¼" Faston terminals for both power and control connections, simplifying wiring and replacement.
- Built-In Protection: Integrated VDR ensures added protection against voltage transients for improved durability.

### **Features & Benefits**

| FEATURES                               | BENEFITS                                                                                                                      |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Compact, Low-Profile Design            | Perfect fit for shallow panels and equipment with limited space, especially in foodservice and light industrial applications. |
| Faston Terminals for Power and Control | Simplifies installation and maintenance with tool-free wiring, reducing downtime and installer effort.                        |
| Integrated Varistor Protection         | Helps absorb voltage spikes, extending the lifespan of the relay and improving reliability in unstable power environments.    |

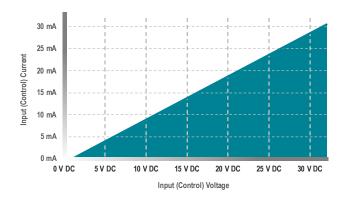
# **Applications**

- Compact foodservice equipment such as hot plates, fryers, and beverage dispensers.
- Low-clearance electrical panels in OEM systems.
- HVAC zone controls and small-scale heating systems.
- Plastic sealing or packaging equipment with space constraints.
- Commercial kitchen appliances requiring quick installation and service.



# **Ordering Information**

| FOR HEATING CONTROL |                       |                   |                              |                                     |                        |                      |
|---------------------|-----------------------|-------------------|------------------------------|-------------------------------------|------------------------|----------------------|
| CATALOG #           | OUTPUT<br>MAX CURRENT | OUTPUT<br>VOLTAGE | OUTPUT<br>SWITCHING<br>STYLE | OUTPUT<br>OVERVOLTAGE<br>PROTECTION | INPUT<br>VOLTAGE RANGE | COMPLIANCE           |
| SRP1-KCDZL-012NF-N  | 12A                   | 240 V AC          | Zero-cross                   | Varistor                            | 4-32 V DC              | сЯUus, CE, VDE, UKCA |
| SRP1-KCDRL-012NF-N  | 12A                   | 240 V AC          | Instantaneous                | Varistor                            | 4-32 V DC              | сЯUus, CE, VDE, UKCA |


# Input/Control Specifications<sup>1</sup>

| GENERAL DATA |                                                             |                                        |         |                                |                                    |      |
|--------------|-------------------------------------------------------------|----------------------------------------|---------|--------------------------------|------------------------------------|------|
| SYMBOL       | PARAMETER                                                   | CONDITION                              | RANGE   | VALUE FOR<br>RANDOM<br>VERSION | VALUE FOR<br>ZERO-CROSS<br>VERSION | UNIT |
|              |                                                             |                                        | Maximum | 32                             | 32                                 | V DC |
| Uc           | Input (Control) Voltage                                     | -                                      | Nominal | 5 – 12 – 24                    | 5 – 12 – 24                        | V DC |
|              |                                                             |                                        | Minimum | 4                              | 4                                  | V DC |
| Urv          | Reverse Voltage                                             | -                                      | Maximum | -32                            | -32                                | V DC |
| Uc on        | Turn-On Voltage<br>(Pick-up/Engage/Activation Voltage)      | -                                      | Minimum | 3                              | 3                                  | V DC |
| Uc off       | Turn-Off Voltage<br>(Drop Out/Release/Deactivation Voltage) | -                                      | Nominal | 1                              | 1                                  | V DC |
| lc           | Input (Control) Current                                     |                                        | Maximum | <30.5                          | <30.5                              | mA   |
| IC           | input (control) current                                     | -                                      | Minimum | <5                             | <5                                 | mA   |
| -            | Input Impedance                                             | -                                      | Nominal | 1.1                            | 1.1                                | kΩ   |
| Ton          | Turn-On Time                                                | At nominal input voltage<br>and f=50Hz | Maximum | 10                             | 0.1                                | ms   |
| Toff         | Turn-Off Time                                               | At nominal input voltage<br>and f=50Hz | Maximum | 10                             | 10                                 | ms   |

# Input Current vs Input Voltage Graphs (for power supply selection)

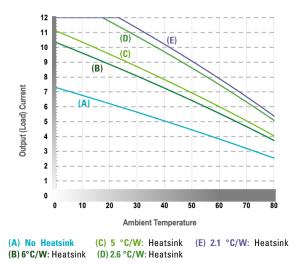
To ensure the Solid-State Relay (SSR) operates efficiently and reliably, it is essential to understand the relationship between input voltage and input current. The following input current graphs provide detailed information on the current consumption of our SSRs across the specified input voltage range (4-32 VDC). This data is crucial for selecting an appropriate power supply and ensuring the relay functions within its safe operating limits. Proper understanding of current consumption is vital for the optimal performance of your application.

# 4-32 VDC Input



# Output/Load Specifications<sup>1</sup>

| GENERAL DATA |                                                                               |                                   |         |                                       |                                       |        |
|--------------|-------------------------------------------------------------------------------|-----------------------------------|---------|---------------------------------------|---------------------------------------|--------|
| SYMBOL       | PARAMETER                                                                     | CONDITION                         | RANGE   | VALUE FOR<br>RANDOM<br>VERSION        | VALUE FOR<br>ZERO-CROSS<br>VERSION    | UNIT   |
| -            | Output Configuration                                                          | -                                 | -       | SPST-NO                               | SPST-NO                               | -      |
|              |                                                                               |                                   | Minimum | 0.1                                   | 0.1                                   |        |
| f            | Operating Frequency                                                           | -                                 | Nominal | 50 - 60                               | 50 – 60                               | Hz     |
|              |                                                                               |                                   | Maximum | 440                                   | 440                                   |        |
|              |                                                                               |                                   | Minimum | 12                                    | 12                                    |        |
| Ue           | Operating Voltage                                                             | 47-63Hz                           | Nominal | 12 - 320                              | 12 - 320                              | Vrms   |
|              |                                                                               |                                   | Maximum | 280                                   | 280                                   |        |
| Uclamp       | Clamping Voltage<br>(by Varistor)                                             | -                                 | Maximum | 520                                   | 520                                   | Vpk    |
| Usync        | Zero Cross Level (Zero Voltage Turn-on)                                       | -                                 | Maximum | Random                                | 12                                    | V      |
| Ua           | Latching Voltage                                                              | At Ue Nominal                     | Minimum | 8                                     | 8                                     | V      |
| V            | On-State Voltage Drop                                                         | At Rated Current                  | Maximum | 0.83 + 0.2 x le                       | 0.83 + 0.2 x le                       | Vrms   |
| Vto          | Threshold Voltage (Power Loss Calculations only)                              | Tvj = 150 °C                      | Maximum | 0.83                                  | 0.83                                  | V      |
| rt           | On state dynamic resistance (Power Loss Calculations only)                    | Tvj = 150 °C                      | Maximum | 20.0                                  | 20.0                                  | mΩ     |
| Up           | Transient Over-Voltage <sup>2</sup><br>(Peak/Blocking/Non-Repetitive Voltage) | -                                 | Maximum | 800                                   | 800                                   | Vpk    |
| Itsm         | Transient Over-Current<br>(Surge/Overload/Non-Repetitive Current)             | Max 1 Cycle<br>Tp = 10ms          | Nominal | 260                                   | 260                                   | Apk    |
| llk          | Leakage Current (Off-State)                                                   | At Rated Voltage                  | Maximum | 1                                     | 1                                     | mArms  |
| dv/dt        | Critical dV/dt (Off-State)                                                    | At Maximum Rated<br>Voltage       | Minimum | 500                                   | 500                                   | V/µsec |
| di/dt        | Non-repetitive di/dt                                                          | -                                 | Maximum | 50                                    | 50                                    | A/µsec |
| l²t          | I²t Value for Fusing                                                          | ½ Cycle at 50/60Hz<br>(Tvj=45 °C) | Nominal | 340                                   | 340                                   | A² sec |
| Pf           | Minimum Power Factor                                                          | At Maximum Load                   | Minimum | 0.45                                  | 0.45                                  | -      |
| Pd           | Power Dissipation                                                             | @ Rated Current                   | Maximum | 0.75 x le +<br>0.02 x le <sup>2</sup> | 0.75 x le +<br>0.02 x le <sup>2</sup> | W      |
| Rthj/c       | Thermal Resistance Junction to Case (Rjc)                                     | -                                 | Maximum | 5.6                                   | 5.6                                   | °C/W   |


Littelfuse SSRs are versatile and can handle different types of loads, such as light, motors, and others. The maximum continuous current values given in this datasheet cover both resistive loads (AC-1 type), mainly used for heating control, and motor loads (AC-3 type). Please refer to the specific data provided for accurate current ratings for each load type.

| SYMBOL    | PARAMETER                           | CONDITION | RANGE                | VALUE FOR<br>RANDOM<br>VERSION | VALUE FOR<br>ZERO-CROSS<br>VERSION | UNIT |
|-----------|-------------------------------------|-----------|----------------------|--------------------------------|------------------------------------|------|
| In (AC 1) | Load Current (Continuous) — Heating |           | Maximum <sup>3</sup> | 12                             | 12                                 | Arms |
| Ie (AC-1) | le (AC-1) Elements (AC-1)           | At 25 °C  | Minimum              | 0.001                          | 0.001                              | Arms |
| 1- (AC 2) | Load Current (Continuous) – Motors  | At 25 °C  | Maximum <sup>3</sup> | 5                              |                                    | Arms |
| le (AC-3) | (AC-3)                              |           | Minimum              | 0.001                          |                                    | Arms |



### Thermal Derating Curves (for heatsink selection)

To operate the Solid-State Relay (SSR) at its specified ratings, the use of a heatsink is mandatory. The following thermal derating curves illustrate the maximum load current that our SSRs can manage under varying ambient temperatures and heatsink sizes. It is crucial to select a heatsink that is most suitable for your specific application.

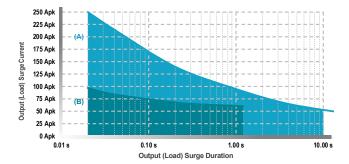


### **Considerations - Switching Type**

- **Heating Elements (AC-1):** In applications requiring precise temperature management, solid-state relays (SSRs) play a crucial role. Specifically, the Zero Cross Switching type of SSR is commonly employed to regulate heaters based on signals from a temperature controller. This technology proves particularly valuable in scenarios where high-frequency switching occurs—such as when a heater cycles on and off frequently over short intervals for extended periods.
- Motors (AC-3): In applications requiring the control of motors or other inductive loads, solid-state relays (SSRs) designed for AC-53 loads are essential. Specifically, the Random Switching type of SSR is recommended for motor applications, as it provides precise control regardless of the load's phase angle. This technology is particularly valuable in scenarios where inductive loads require frequent on/off cycling, such as in conveyor belts, pumps, or fans. The ability to handle high inrush currents and rapid switching ensures smooth operation and reduces wear on motor windings.

### **Considerations - Inrush Current**

- Heating Elements (AC-1): It's essential to recognize that variations exist between different types of heating elements, especially in hot or cold conditions. While it is generally expected that heating elements exhibit no inrush current, in certain heating elements cold conditions can lead to an inrush current equivalent to 1.4 times the nominal current. To mitigate this, we highly recommend oversizing the current rating and ensuring an appropriately sized heatsink. Doing so improves the relay's thermal endurance and extends its operational lifespan. So, when selecting an SSR, consider using one with a capacity approximately 1.4 times that of the heater or operating the SSR at only 75%-80% of its maximum capacity.
- Motors (AC-3): It's critical to account for the high inrush currents characteristic of motors or inductive loads, especially during startup. These currents can be 6-10 times the nominal running current, depending on the motor type and load. To mitigate potential overheating or damage to the SSR, we strongly recommend selecting an SSR with a current rating that accommodates the inrush current. So, when selecting an SSR for motor or inductive loads, consider using one with a capacity approximately 6-10 times the nominal running current of the load, or operating the SSR at only 50%-60% of its maximum rated capacity.


| NOMINAL SSR    | MAXIMUM RECOMMENDED | HEATER POWER |
|----------------|---------------------|--------------|--------------|--------------|--------------|--------------|
| CURRENT RATING | HEATER CURRENT      | AT 120 VAC   | AT 240 VAC   | AT 400 VAC   | AT 480 VAC   | AT 600 VAC   |
| 12 A           | 9.6 A               | 1.2 KW       | 2.3 KW       | 3.8 KW       | 4.6 KW       | 5.8 KW       |



### **Output Surge Current Withstand Graphs (for transient protection)**

To ensure the Solid-State Relay (SSR) can handle sudden increases in current without damage, it is essential to understand its surge current capacity. The following surge current graphs illustrate the maximum surge current that our SSRs can withstand over various durations. This information is crucial for selecting an SSR that can endure transient overcurrent events, ensuring the reliability and safety of your electrical system. Proper understanding of surge current capacity helps in preventing equipment failure and maintaining optimal performance in your application.

The graphs include a *Single Pulse Surge Current* curve used to define the protection offered by fuses, helping in the selection of appropriate protective devices. Additionally, is important to ensure that the *Repetitive Surge Current* curve is not exceeded during normal operation, as frequent overload currents can decrease the life expectancy of the SSR. Therefore, caution is advised to maintain the longevity and reliability of the SSR.



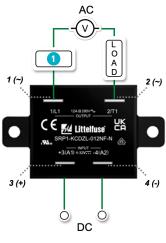
(A) Single Pulse Surge: Initial SSR internal temperature at  $25^{\circ}\text{C}$  (cooler state from minimal or no operation).

(B) Repetitive Surges: Initial SSR internal temperature 70°C (warmer state from continuous operation).

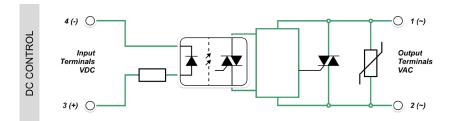
# General Specifications<sup>1</sup>

| GENERAL DATA |                                                                                                                                                                                                                                        |                                         |         |                                                          |        |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------|----------------------------------------------------------|--------|
| SYMBOL       | PARAMETER                                                                                                                                                                                                                              | CONDITION                               | RANGE   | VALUE                                                    | UNIT   |
| -            | LED for Input (Control) Status Indicator                                                                                                                                                                                               | -                                       | -       | Continuously ON Green LED, when control input is applied | -      |
|              |                                                                                                                                                                                                                                        | Input to Output<br>(50/60 HZ)           | Nominal | 4,000                                                    |        |
| Ui           | Isolation (Dielectric Strength)                                                                                                                                                                                                        | Input/Output to<br>Ground (50/60<br>HZ) | Nominal | 4,000                                                    | Vrms   |
| Ri           | Insulation Resistance                                                                                                                                                                                                                  | @ 500 V DC                              | Minimum | 1                                                        | GΩ     |
| -            | Coupling Capacitance                                                                                                                                                                                                                   | Input / Output                          | Maximum | 0.8                                                      | pF     |
| Uimp         | Impulse Withstand Voltage                                                                                                                                                                                                              | -                                       | Nominal | 4,000                                                    | Vrms   |
| -            | Short Circuit Current Rating (SCCR)                                                                                                                                                                                                    | -                                       | -       | 5                                                        | kA     |
| -            | Endurance according to American Standard UL508                                                                                                                                                                                         |                                         | Typical | 6,000                                                    | Cycles |
| -            | MTTFd (Mean Time to Dangerous Failure) (Calculated in accordance with the guidelines for safety-related parts of control systems, as specified by the international standard ISO 13849-1)                                              | -                                       | -       | 282                                                      | Years  |
|              | MTBF <sup>3</sup> (Mean Time Between Failures) (Calculated in accordance with the Military Handbook Guidelines for Reliability Prediction of Electronic Equipment, as specified by the US Department of Defense Standard MIL-HDBK-217) |                                         | -       | 93                                                       | Years  |
|              |                                                                                                                                                                                                                                        |                                         | -       | 63                                                       | ledis  |




| ENVIRONMENTAL DATA |                                                                                                                                                 |                                                          |         |            |         |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------|------------|---------|
| SYMBOL             | PARAMETER                                                                                                                                       | CONDITION                                                | RANGE   | VALUE      | UNIT    |
| -                  | Vibration (Test conducted in accordance with the Vibration Environmental Testing Guidelines of the International Standard IEC 60068-2-6)        | 5-100Hz                                                  | Nominal | 10         | g       |
| -                  | Shock<br>(Test conducted in accordance with the Shock Environmental<br>Testing Guidelines of the International Standard <i>IEC 60068-2-27</i> ) | 11ms                                                     | Nominal | 30, 40, 50 | g       |
|                    | - Ambient Temperature - Operating (Working) <sup>a</sup>                                                                                        |                                                          | Maximum | 100 (212)  | °C (°F) |
| -                  | Ambient Temperature - Operating (Working)                                                                                                       | No icing, no condensation                                | Minimum | -40 (-40)* | °C (°F) |
|                    | Ambient Temperature - Storage                                                                                                                   | N. · ·                                                   | Maximum | 100 (212)  | °C (°F) |
| -                  | Ambient temperature - Storage                                                                                                                   | No icing, no condensation                                | Minimum | -40 (-40)* | °C (°F) |
| HR                 | Relative Ambient Humidity<br>(Per international standard <i>IEC/EN 60068-2-78</i> )                                                             | Non-condensing @ 40 °C                                   | Nominal | 40 to 85   | %       |
| -                  | Pollution Degree                                                                                                                                | Non-conductive pollution with condensation possibilities | Nominal | 2          |         |

| MECHANICAL DATA |                                                                                                                                                                |                  |         |                                |                |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|--------------------------------|----------------|
| SYMBOL          | PARAMETER                                                                                                                                                      | CONDITION        | RANGE   | VALUE                          | UNIT           |
| -               | Product Weight                                                                                                                                                 | -                | Typical | 40 (0.09)                      | g (lbs)        |
| -               | Housing Material<br>(In accordance with the American Standard UL-94<br>for Safety of Flammability of Plastic Materials for<br>Parts in Devices and Appliances) | -                | -       | Plastic UL 94 V-0              | -              |
| -               | Baseplate Material                                                                                                                                             | -                | -       | Aluminum, Tinned-plated        | -              |
| -               | Touch Protection Level (Test conducted in accordance with the IP Code of Degrees of Protection Testing Guidelines of the International Standard IEC 60529)     |                  |         | IP20                           | -              |
|                 | Terminals                                                                                                                                                      | Input/Output     | Input   | 0.25" Fastons                  |                |
| -               | Terminals                                                                                                                                                      | iliput/Output    | Output  | 0.25" Fastons                  | -              |
|                 | Screw Torque Range                                                                                                                                             | SSR Mounting     | Minimum | 1.2 (11)                       | Nm (in-lb)     |
| -               | Screw lorque hallye                                                                                                                                            | SSIT IVIOUITHING | Maximum | 1.8 (16)                       | (מו-ווו) ווואו |
| -               | Screw Thread Size                                                                                                                                              | SSR Mounting     | -       | M4 x 12mm or<br>#8-32 Pan Head | -              |


# **Product Dimensions (Millimeters)**



# **Wiring Diagram**



# **Equivalent Circuit Block Diagrams**



# 1 Protection Equipment

## **Short-Circuit Protection by Fuse**

To safeguard solid-state relays (SSRs) against load short circuits, the use of fuses is essential, especially fast-acting ones. Here are the key considerations:



- Fuse Selection: The I²t value (energy withstand capability) of the fuse should be less than half of the I²t value of the relay. Standard fuses are inadequate because they cannot react swiftly enough to prevent fault currents from exceeding the maximum levels that thyristors (used in SSRs) can handle. Therefore, we strongly recommend employing ultra-fast fuses.
- Fuse Placement: Position the fuse in front of the SSR in the circuit. This strategic placement ensures that if the relay must unexpectedly break the earth insulation (due to overheating, case damage, or leakage with the heatsink), the fuse will protect the entire circuit from firing.
- Resource for Fuse Options: For the most suitable fuse options, consider checking the Littelfuse website.

# **Standards Conformity & Certifications**

# **Product Safety Certifications**

Products tested, compliant and certified to the following standards that states the requirements for electrical products to ensure they are safe for consumers to use.

| CERTIFICATION<br>BODY MARK     | CERTIFICATION<br>BODY NAME | CERTIFICATION<br>DESCRIPTION                                                                                    | STANDARDS COVERED BY THE CERTIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>c 511</b> us<br>No. E183688 | сЯUus                      | North American certificate of<br>compliance with the Safety<br>requirements for Industrial<br>Control Equipment | UL508 American Standard of Safety for Industrial Control Equipment. CAN/CSA C22.2 No.14-18 Canadian Standard of Safety for Industrial Control Equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CE                             | CE                         | Conformity with the<br>European safety, health, and<br>environmental protection<br>requirements.                | LVD Directive 2014/35/EU EU Directive of Safety for Low Voltage Gear Equipment. In accordance with the Low Voltage Gear Testing Guidelines of the International Standard IEC 60947-4-3  EMC Directive 2014/30/EU EU Directive of Electromagnetic Compatibility. In accordance with the Low Voltage Gear Testing Guidelines of the International Standard IEC 60947-4-3  ROHS Directive 2015/863/EU EU Directive of Hazardous Substances Restriction. In accordance with the Assessment of electrical and electronic products with respect to the restriction of Hazardous substances Guidelines of the International Standard IEC 63000 |
| UK<br>CA                       | UKCA                       | Conformity with the UK product safety regulations                                                               | SI 1101  UK Regulations of Safety for Electrical Equipment.  In accordance with the Low Voltage Gear Testing Guidelines of the International Standard IEC 60947-4-3  SI 1091  EU Directive of Electromagnetic Compatibility.  In accordance with the Low Voltage Gear Testing Guidelines of the International Standard IEC 60947-4-3  SI 3032  EU Directive of Hazardous Substances Restriction.  In accordance with the Assessment of electrical and electronic products with respect to the restriction of Hazardous substances Guidelines of the International Standard IEC 63000                                                    |

# **EMC Compliance (Electro-magnetic compatibility)**

## **Radiated Emissions**

| -   | STANDARD NAME | STANDARD DESCRIPTION                             | STANDARD NUMBER                 | LEVELS                                       |
|-----|---------------|--------------------------------------------------|---------------------------------|----------------------------------------------|
| IEC | Radiated RF   | Radio interference field emission (radiated)     | International Standard CISPR 11 | Class B: 30M – 1GHz                          |
| IEC | Conducted RF  | Radio interference voltage emissions (conducted) | International Standard CISPR 11 | Class A (with external filter): 150k – 30MHz |

# **Immunity**

| -          | STANDARD NAME | STANDARD DESCRIPTION                      | STANDARD NUMBER                      | LEVELS                                                                                           |
|------------|---------------|-------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------|
| <b>IEC</b> | ESD           | Immunity to Electrostatic Discharge (ESD) | International Standard IEC 61000-4-2 | Level 3 - Contact Discharge: ±6 kV - Air Discharge: ±8 kV - Performance Criteria: A              |
| <b>IEC</b> | Radiated RF   | Immunity to Radiated Radio Frequency      | International Standard IEC 61000-4-3 | Level 3:<br>- 10 V/m (80MHz-2GHz)<br>Level 2<br>- 3 V/m (2GHz-6GHz)<br>- Performance Criteria: A |



| IEC.       | Burst                                              | Immunity Electrical Fast Transients (Burst) | International Standard IEC 61000-4-4  | 2 kV<br>Performance Criteria: A                                                                                                                                                                   |  |
|------------|----------------------------------------------------|---------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>IEC</b> | Surge                                              | Immunity to Electrical Surges               | International Standard IEC 61000-4-5  | 2 kV<br>Performance Criteria: A                                                                                                                                                                   |  |
| IEC.       | Conducted RF Immunity to Conducted Radio Frequency |                                             | International Standard IEC 61000-4-6  | Level 3: 10V/m (0.15 - 80 MHz)<br>Performance Criteria: A                                                                                                                                         |  |
| IEC        | Dips                                               | Immunity to Voltage Dips                    | International Standard IEC 61000-4-11 | -0% for 0.5, 1 cycle, Performance Criteria A<br>-40% for 10/12 cycles, Performance Criteria A<br>-70% for 25/30 cycles, Performance Criteria A<br>-80% for 250/300 cycles, Performance Criteria A |  |
| IEC.       | Interruptions                                      | Immunity to Voltage Interruptions           | International Standard IEC 61000-4-11 | 0% for 250/300 cycles, Performance Criteria B                                                                                                                                                     |  |

While these products are designed to meet high industrial standards for Class A equipment, ensuring robust performance in demanding environments, they may cause radio interference when used in domestic settings. To mitigate this, additional noise reduction measures, such as filters or shielding, may be necessary. Ensure that the entire setup where the SSR is installed complies with all relevant EMC regulations required by the application.

# Environmental Compliance<sup>5</sup>

Products comply to the following environmental standard requirements for electrical products to ensure they are safe for consumers to use.

| -     | STANDARD NAME                                                                                                                    | STANDARD DESCRIPTION                                                                                                                | STANDARD NUMBER                            |
|-------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| RoHS  | RoHS                                                                                                                             | Conformity with the European Restriction of Hazardous Substances in electrical and electronic products                              | European Directive 2015/863/EU (IEC 63000) |
| REACH | REACH                                                                                                                            | Conformity with the Registration, Evaluation, Authorization and Restriction of Chemicals regulation to ensure safe use of chemicals | European Directive 1907/2006               |
| X     | WEEE Conformity with the Waste Electrical and Electronic Equipment regulation to ensure proper disposal and recycling of e-waste |                                                                                                                                     | Regulation 2002/96/EC                      |

#### Notes

- 1. All parameters at 25 °C unless otherwise specified.
- 2. CE declared up to 280 V.
- 3. AC input option minimum operating temperature is -40 (-40).
- 4. All parameters at 50% power rating and 100% duty cycle.
- 5. The environmental compliance data reflects the most current information available and adheres to our rigorous standards for quality and sustainability. These specifications are valid from the product's initial release and are subject to change with ongoing improvements.

### **Accessories**

| IMAGE | CATALOG #   | TYPE              | DESCRIPTION                                           |
|-------|-------------|-------------------|-------------------------------------------------------|
|       | SANP-C1N030 | Thermal Interface | Thermal Pad (Usable for 1 relay)                      |
|       | SANG-CNN090 | Thermal Interface | Heat Sink Thermal Paste 20 ml (Usable for 60+ relays) |

### **Warning Information**

Caution: Material Damage, Electric Shock, and Arc Flash Hazard. Before installing or working with this product, take the following precautions:

- Disconnect all power: Ensure that all power sources are disconnected.
- 2. Verify connections: Double-check all connections.

Failure to adhere to these instructions may lead to serious injury or damage of equipment.

Disclaimer Notice — Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littleffuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littleffuse.com/product-disclaimer.

